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ABSTRACT

This project represents a pilot study in the Cowhouse Creek drainage of Fort Hood, Texas, with 
the aim of creating an interactive archaeological predictive modeling tool to assist decision making 
on the part of the Fort Hood CRM program. It resulted in three GIS data products: 1) a statistically 
based two-dimensional (2-D) surface probability archaeological predictive model; 2) an updated 
alluvial landform map for the study area used in a 3-D sub-surface probability predictive model; 
and 3) an interactive “Predictive Model Viewer” tool that integrates the 2-D and 3-D models. The 
unique methodological approach used here results in the integration of surface and sub-surface 
probability models and the interactive tool provides a rapid, easy-to-use method of synthesizing 
their output for management purposes.
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PREFACE

This report is part of a project executed by the Center for Environmental Management of Mili-
tary Lands (CEMML), Colorado State University, on behalf of the Fort Hood Cultural Resources 
Management Program. The project was entitled “Temporal Predictive Archaeological Model for 
Fort Hood, Texas,” and was contracted through the United States Army Medical Research Acqui-
sition Activity (USAMRAA), Fort Detrick, Maryland, under the terms of Cooperative Agreement 
DAMD17-02-2-0008, Task Order 2002-2, awarded to CEMML. Project execution involved a period 
of fi eldwork during which NRHP-eligible prehistoric sites within the Cowhouse Creek drainage 
were re-located and georeferenced using state-of-the-art GPS technology with decimeter accuracy. 
This permitted precise verifi cation and/or correction of site locations prior to the predictive model-
ing analysis. This work was carried out by Mr. Stephen A. Sherman, CEMML staff archaeologist, 
with the assistance of Mr. Joel Gutierrez. In addition, CEMML GIS Analyst Michael O’Donnell 
created the Digital Elevation Model (DEM) employed in the predictive modeling analysis, as well 
as a series of other GIS datasets.

The 2-D and 3-D predictive modeling analysis contained in this report was sub-contracted to 
Professor William C. Johnson, Department of Geography, University of Kansas, though Subaward 
Agreement G-2496-1 between Colorado State University and the University of Kansas.

     
        James A. Zeidler, Ph.D., RPA
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A Pilot Study in the Cowhouse Creek Drainage

1.0 INTRODUCTION

Project requirements, as outlined by the 
Statement of Work for the pilot three-dimen-
sional (3-D) predictive model of Fort Hood, Tex-
as, involve creation of two products: fi rst, an ex-
plicit GIS layer and associated database usable 
as a predictive model for determining where 
additional unknown sub-surface cultural mate-
rials may be located within the pilot study area; 
and second, a methodology that the Fort Hood 
CRM personnel can use to expand the study 
to other priority areas on Fort Hood. In order 
to fulfi ll the project requirements, three Geo-
graphic Information Systems (GIS) data prod-
ucts were created: 1) a two-dimensional (2-D) 
archaeological predictive model; 2) an updated 
alluvial landform map for upper Cowhouse 
Creek and Table Rock Creek, which forms the 
basis of the 3-D predictive model; and 3) the 
‘Predictive Model Tool’, a custom-software tool 
designed to integrate the results of the 2-D and 
3-D models.

Specifi c report objectives include: 1) orga-
nize a GIS database containing archaeological 
and environmental data in an appropriate for-
mat for predictive modeling; 2) construct a 2-D 
archaeological predictive model using quanti-
tative landscape metrics; 3) translate the ex-
isting geoarchaeological (3-D) model into a GIS 
data layer (Nordt 1992); and 4) integrate the 
output of the two models using a customized 
software tool. The resulting data products pro-
vide a rapid method for investigating the cul-
tural potential of any given land parcel within 
the study area. Using this methodology, a 2-D 
and 3-D integrated model can be constructed 
for the entire Fort Hood Military Reservation. 
Software used in the construction of these mod-
els includes ESRI ArcGIS and Spatial Analyst 
GIS tools, Statistical Package for the Social Sci-
ences (SPSS) statistical software, Microsoft Ex-
cel spreadsheet, and Microsoft Visual Basic.

Two different types of predictive models 
are used in this report: fi rst, a statistically 
based surface probability model, referred to as 
the 2-dimensional (2-D) model; and second, a 
geoarchaeological surface and subsurface mod-
el. The 2-D model analyzes the spatial pattern 
observed in a sample of archaeological sites 
and quantifi es the relationship between site 
locations and the local environment. Empiri-
cal patterns observed in the sample data are 

then projected onto the study area and tested 
for accuracy against a different set of archaeo-
logical sites. The 2-D model does not take into 
consideration the possibility of sites buried at 
signifi cant depth; it is designed to predict areas 
of the landscape with similar environmental 
conditions, on the surface, to areas with known 
cultural resources. The 3-D model is based on 
an investigation of the extent and composition 
of alluvial landforms in the Cowhouse Creek 
and Table Rock Creek valleys. A generalized 
composite geologic cross-section for each river 
valley was previously created that describes 
the potential stratigraphic composition of indi-
vidual landforms and the implications for cul-
tural preservation in those landforms, both on 
the surface and buried. A custom-built software 
tool, the ‘Predictive Model Viewer’, is designed 
to integrate the output of these two models in a 
concise form within the ArcGIS environment.

Fort Hood archaeological and environmen-
tal GIS datasets are well suited for the devel-
opment of archaeological predictive models. 
Methods used in the integrated model repre-
sent a unique approach for combining high-
resolution environmental data, an intensive 
archaeological survey regime, and an existing 
well-developed geoarchaeological model into a 
cohesive model of the potential for cultural ma-
terial within the study area. These facets of the 
Fort Hood dataset, along with the increased us-
ability of GIS, combine to result in a data prod-
uct superior to previous modeling attempts. 
The integrated GIS model allows a user to 
select any location within the study area and 
instantly receive model predictions concerning 
the probability of that location for containing 
both a surface and/or buried archaeological site 
and the cultural/temporal period of the poten-
tial site.

2.0 STUDY AREA AND LANDSCAPE 
CHARACTERIZATION

Fort Hood is located in a dissected part of 
the eastern margin of the Edwards Plateau of 
central Texas and consists of Lower Cretaceous 
sedimentary geology. United States Depart-
ment of Agriculture data on the Major Land 
Resource Areas indicates Fort Hood is located 
in the Grand Prairie physiographic zone (Fig-
ure 1). Stratigraphy of the military reservation 
and environs consists of the Glen Rose Forma-
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tion (limestone), Paluxy Sand (quartz sands), 
Walnut Clay (clay, limestone and shale), Co-
manche Peak Limestone, Edwards Limestone 
and Kiamichi Clay (undifferentiated) (Barnes 
1979). Earliest post-Cretaceous landscape evo-
lution still in evidence is the Lampasas Cut 
Plain on the Edwards Plateau (Hayward et al. 
1990) (Manning Surface: Nordt 1992). Subse-
quently, an intermediate surface (Killeen Sur-
face: Nordt 1992) developed through pedimen-
tation, resulting in a rolling plain developed on 
the Walnut Clay. Middle Pleistocene abandon-
ment of the Killeen Surface was followed by an 
episode of drainage entrenchment (Hayward 
et al. 1990), which resulted in a sequence of 
late-Pleistocene and Holocene terraces and the 
modern fl ood plain (Nordt 1992).

Late-Quaternary alluvial and environ-
mental history of the region has been well ar-
ticulated by Blum and colleagues. In a study of 
the Perdernales River system of central Texas, 
Blum and Valastro (1989) reconstructed the al-
luvial history, focusing on detailed articulation 
of the late-Holocene record. Blum (1990), in an 
investigation of the Pleistocene and Holocene 
alluvial history of the Colorado River system 
of central Texas, considered climatic and eu-
static impacts as interpreted from the alluvial 
stratigraphic record. Employing existing fossil 
vertebrate, pollen, and plant macrofossil data 
from the Edwards Plateau as climatic proxies, 
Toomey and others (1993) reconstructed a tem-
poral sequence of change in temperature and 
effective moisture from about 14,000 years ago. 
Blum and others (1994) developed a model of 

Figure 1. Major Land Resource Areas in Texas
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fl uvial landscape evolution in the stream sys-
tems draining the Edwards Plateau, spanning 
the last 20,000 years (Barnes 1979; Blum 1990; 
Blum et al. 1994; Blum and Salvatore Valas-
tro 1989; Hayward et al. 1990; Toomey et al. 
1993).

Specifi cally, the study area of this project 
is located in the western portion of the Fort 
Hood Military Reservation and includes Upper 
Cowhouse Creek and Table Rock Creek (Fig-
ure 2 and Figure 3). The western boundary of 
the study area is Highway 116 and the eastern 
boundary is West Range Road. The northern 
and southern boundaries are demarcated by 
Shell Mountain and Manning Mountain Roads 
on the north, and by Elijah Road on the south. 
The area contains components of the stream 
networks and the intermediate upland, Killeen 

Surface. Figure 4 displays the study area as 
rendered in 3-D using ESRI ArcScene software. 
Created by draping high-resolution aerial pho-
tography over the existing DEM, the image 
perspective is looking northwest, up the Cow-
house Creek valley.

3.0 ARCHAEOLOGICAL (2-D) 
PREDICTIVE MODELING REVIEW

This section provides an overview of the 
theoretical background of archaeological pre-
dictive modeling. In essence, an archaeologi-
cal predictive model is a tool that indicates the 
likelihood of cultural material being present at 
a location (Gibbon 2000). The theoretical basis 
of predictive modeling relies on human behav-
ior being non-random, and that the spatial pat-

Figure 2. Fort Hood Military Reservation Boundary and Study Area.
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tern of cultural materials on the landscape rep-
resents the remnants of an intentional strategy 
to exploit landscape resources. Predictive mod-
els attempt to extract the spatial pattern in-
herent to a sample of site locations with respect 
to various environmental variables (using any 
number of pattern recognition methods) and 
project the abstracted pattern to the study 
area as a whole (Kvamme 1992). By applying 
the quantitative abstraction to the entire study 
area, the model selects locations with a set of 
landscape characteristics similar to those of 
the input sample of known site locations. Iden-
tifying these areas of the landscape should in-
crease the likelihood of fi nding unknown sites.

The majority of archaeological models de-
veloped for North America use environmental 
data to determine the probability of a loca-

tion for containing cultural material. Predic-
tive models, when combined with GIS, can be 
thought of as macro-scale landscape screening 
tools. The prediction, or screening, component 
of these models becomes apparent when the 
empirical relationship extracted from the sam-
ple data is projected onto areas not surveyed 
for archaeological sites. GIS allows the compi-
lation of environmental datasets covering very 
large tracts of land; with the development of 
an equation relating environmental conditions 
to site locations, these large unsurveyed areas 
can be ‘screened’ for the potential of contain-
ing sites. In terms of cultural resource manage-
ment or development planning, having infor-
mation about the potential location of sites can 
save time and money (Hudak et al. 2000).

Figure 3. Digital Elevation Model with Study Area Boundary.
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A more specifi c explanation of archaeo-
logical predictive models is offered by Kvamme 
(1990:261), who defi nes a predictive model as 
“an assignment procedure that correctly in-
dicates an archaeological event outcome at a 
land parcel location with greater probability 
than that attributable to chance.” The assign-
ment procedure, or decision rule, is a set of 
criteria that determine whether a land parcel 
is assigned to one archaeological event class 
or another on the basis of some non-archaeo-
logical input. In the case of environmentally 
based archaeological predictive modeling, the 
decision rule uses environmental information 
about a land parcel as input. Output of the de-
cision rule is classifi cation of the land parcel 
to a single archaeological event class (Kvamme 
1990). The following section discusses the ideas 
of a land parcel, archaeological event classes, 
and decision rules in greater detail.

3.1 Fundamental Components of 
Predictive Models

3.1.1 Unit of Investigation

The fundamental component of any ar-
chaeological predictive model is the unit of in-
vestigation. Typically, in archaeological studies 
the analysis unit is the archaeological site, but, 
in the case of archaeological predictive model-
ing the unit of investigation is the individual 
parcel of land (Kvamme 1988a). Dividing the 
landscape into a series of contiguous parcels is 
analogous to laying a grid of uniform size over 
the landscape. All land parcels therefore will be 
uniform in size and shape. This division works 
well with the use of GIS, as the single land par-
cel forms the standard grid cell used in raster 
data analysis. Determining the appropriate par-
cel size involves consideration of the available 
environmental data and the modeling goals. 
Size of the land parcel has implications for the 
conclusions of the model. If the parcel size is 
large (> 1km2), the results may be too coarse 

Figure 4. Study area 3-D perspective view using high resolution imagery draped over a DEM
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for any actual site predictions. However, if the 
goal is to predict the number of sites that occur 
within one land parcel, a large parcel size may 
be desirable. The optimal parcel size captures 
the variability of the landscape that infl uenced 
cultural behavior but is not a fi ner scale than 
the available environmental data (Hudak et al. 
2000). Consideration of the available environ-
mental datasets is important because although 
most GIS packages will display map data at 
any scale, digital datasets are collected with a 
specifi c margin of error and consequently have 
limits to the positional accuracy of the data 
(Clarke et al. 2002). Therefore, the use of a grid 
size that is too small for the mapping scale of 
the environmental data runs the risk of intro-
ducing false precision into the model.

At Fort Hood, the methods used to derive 
the available terrain data utilized modern pho-
togrammetric techniques and as a result, the 
data are considered accurate and precise. Sub-
sequently, the terrain dataset is very high reso-
lution, and a small land parcel size (5 meters x 
5 meters) is possible. Quality of the available 
environmental data is discussed later in the re-
port, however, it should be noted the current 2-
D model utilizes a land parcel size signifi cantly 
smaller than most predictive models cited in 
the literature.

3.1.2 Archaeological Events

Output of an archaeological predictive 
model is the assignment of a land parcel to an 
archaeological event class. Prior to model con-
struction, the archaeological event classes must 
be defi ned. The simplest set of archaeological 
events involves classifying a parcel into either 
a site-present or site-absent class. Other predic-
tive models use archaeological event classes 
structured to predict the type of site present at 
a location, the number of sites within a parcel, 
or the density of artifacts within a parcel. Re-
gardless of the modeling goals, the set of poten-
tial event classes must be mutually exclusive 
and exhaustive, meaning a parcel must be as-
signed to only one of the event classes and all 
parcels must be classifi ed (Kvamme 1990).

Using notation derived from Kvamme 
(1990), the following sections describe the po-
tential event classes available to the current 2-
D predictive model. For each land parcel used 
to construct the model, two potential archaeo-

logical events representative of the land par-
cels true condition are possible:

S = {site-present}
or

S’ = {site-absent}

Model output assigns every land parcel 
into one of two potential archaeological event 
classes:

M = {model predicts site-present}
or

M’ = {model predicts site-absent}

The difference between these two sets of 
event classes is crucial for interpreting model 
results. Any single land parcel can be classifi ed 
according to its condition in reality (S or S’) and 
by its condition predicted by the model (M or 
M’). Because no model makes perfect predic-
tion, the true condition and the model predic-
tion of a land parcel may not agree. Comparing 
the relative values of S, S’, M, and M’ provides 
a quantitative method for evaluating model 
performance. This notation will be referred to 
throughout the report.

3.1.3 Predictive Models as Decision Rules

An archaeological predictive model is a deci-
sion rule conditional on other, non-archaeologi-
cal features of a location (Kvamme 1990:261). 
Decision rules can be generated using tech-
niques ranging from an inductive analysis us-
ing statistical techniques to derive an equation 
from empirical patterns in sample data to a 
deductive analysis in which a trained archae-
ologist creates decision rules based on previ-
ous knowledge of cultural patterns. The critical 
question when constructing an archaeological 
model is the relative weights to associate with 
each non-archaeological variable, or in this case 
each environmental variable. A professional ar-
chaeologist working within a region will inevi-
tably have a mental conception of where sites 
occur on the landscape. However, this informa-
tion is often localized and may vary between 
archaeologists. The utility of statistical meth-
ods in model development relates to the inde-
pendent method in which variable weights can 
be derived. Deductive knowledge is required 
for the initial variable selection, but the spe-
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cifi c values for each variable are derived from 
the spatial patterns of the sample data. In this 
way a modeler can concentrate on macro-scale 
selection of variables and appropriate data 
structures and let the statistical method de-
rive the micro-scale variable weights. Kvamme 
(1990), Carr (1985), and Parker (1985) provide 
a thorough review of various statistical and 
inductive methods. The predominant statisti-
cal technique used in archaeological predictive 
modeling is the logistic regression method. Lo-
gistic regression is discussed further in Section 
3.5.

3.2 Factors Infl uencing Model 
Development

A survey of the available literature indi-
cates predictive modeling has been utilized in 
various geographic and archaeological contexts 
(Lock and Stancic 1995; Westcott and Brandon 
2000; Wheatley and Gillings 2002). The type of 
environment and cultural group under study 
infl uences model development, particularly in 
the selection of explanatory variables. Selec-
tion of relevant variables for model inclusion is 
dependent upon the mechanisms in which the 
cultural group under study interacted with the 
environment. Consider the differences between 
a nomadic hunter-gather on the Great Plains, 
a sedentary horticulturalist in the Blue Ridge 
Mountains, and a Roman agriculturalist in It-
aly. Clearly the relationship between cultural 
activity and the environment are different in 
these situations, thereby leading to a differ-
ent set of relevant environmental variables se-
lected for initial entry into the model. In terms 
of statistically evaluating model performance, 
the goodness-of-fi t statistics designed to mea-
sure how well the archaeological data fi t the 
input variables are affected by the number of 
variables selected for model inclusion. A con-
dition known as hyperfi tting, an upward bias 
of the goodness-of-fi t statistic, occurs as more 
explanatory variables are added to the model 
(Kvamme 1988a). Therefore, the number of ex-
planatory variables should be kept as low as 
logically possible.

A primary factor to consider in model de-
sign is the type and complexity of the economic 
system used by the cultural groups under study. 
Hunter-gather lifeways can be described as fol-
lowing an optimal food procurement strategy 

in which the culture group extracts a living 
directly from the environment and patterns 
their site selection on the basis of minimizing 
energy output (Bamforth 1988; Butzer 1982; 
Jochim 1976). The close relationship between 
cultural behavior and environmental resources 
provides justifi cation for the credibility of en-
vironmentally based model predictions. Mar-
ket-driven economic systems of more advanced 
societies, primarily in Europe with some ex-
amples in North America, result in site pat-
terns not entirely based on environmental re-
sources. In these cases, social factors (distance 
to road, viewshed of defensive fortifi cations) 
may be important for describing site patterns 
(Kvamme 1990; Lock 2000; Lock and Stancic 
1995; Wheatley and Gillings 2002). Spurious 
correlations may occur if inappropriate vari-
ables are included in the analysis. A model may 
be technically accurate but not have any real 
archaeological meaning; therefore, successful 
predictive modeling requires a theoretical un-
derstanding of the culture, environment, and 
time period under analysis.

Variation in environmental conditions, 
along with different social practices and eco-
nomic systems between different cultural 
groups, requires adjustments to the modeling 
practice. Environmental considerations must 
be factored into the modeling methodology pri-
or to analysis. One method of dealing with envi-
ronmental variation is to divide the landscape 
into distinct physiographic regions and model 
each region separately (Hudak et al. 2000). Re-
gional division of the landscape can be based 
upon any physiographic criteria, so long as the 
divisions represent signifi cantly different re-
source zones. Distribution of resources within 
a region will infl uence site patterns within the 
region. If the distribution of resources or the 
type of resources change signifi cantly between 
regions, then a model constructed for one region 
may not be appropriate for another region. It is 
important to note that if a quantitative method 
is used in the modeling process, the derived 
equation should only be implemented within 
the region for which it was developed.
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3.3 Limitations

3.3.1 Garbage In – Garbage Out

Just as with other computer applications, 
the saying ‘garbage in – garbage out’ can be 
applied to predictive modeling. Incorrect input 
data, either environmental or archaeological, 
will adversely affect accuracy of the model out-
put. Potential sources of error in archaeological 
data include the spatial position of site loca-
tions, the widespread lack of reliable cultural 
affi liation for site materials, and poorly distrib-
uted sample data. Potential sources of error in 
environmental data include issues of map ac-
curacy and the inappropriate use of geographic 
data sets.

3.3.2 Environmental Determinism

Is it acceptable to predict human behav-
ior using environmental variables? Have we 
not traveled down this theoretical road before? 
Geographers have spent the last century liv-
ing down the philosophical implications of en-
vironmental determinism. Yet, when it comes 
to archaeological research, the temptation to 
use environmental models to describe cultural 
behavior is hard to resist. Many archaeological 
sites demonstrate repeated habitation, indi-
cating the environmental resources of a loca-
tion are found desirable by different cultures 
throughout time. If environmental resources 
are consistently found desirable, and those 
resources change slowly through time, then 
searching for unknown cultural materials on 
the basis of environmental conditions is justi-
fi ed. Well-constructed archaeological models 
accurately predict 70 - 85% of known archaeo-
logical sites. Repeated credibility of such ac-
curacies indicates the relevance of predictive 
modeling as an investigative tool (Gaffney and 
van Leusen 1995; Hudak et al. 2000).

Opponents of predictive modeling point 
to the lack of theory behind the results of em-
pirical models. One signifi cant critique of the 
method relates to the central tenet of predic-
tive modeling that environmental map data 
accurately represent the true landscape and 
that proximity measures derived from map 
data are important for explaining settlement 
strategies. Another critique of environmental 
data involves the reliability of modern maps to 

accurately represent environmental conditions 
in the past, especially when considering exist-
ing paleo-climatic reconstructions (Ebert 2000; 
Gaffney and van Leusen 1995). While these cri-
tiques must be considered, predictive modeling 
as a tool for archaeological investigation should 
not be discarded. The changing nature of the 
landscape and accuracy of the available map 
data must be considered prior to model con-
struction and when interpreting model output.

Others critiques point to the nature of the 
archaeological data and the fact that many 
archaeological sites are discovered through 
salvage efforts and, as a result, tend to be pat-
terned. The manner in which sites are selected 
for inclusion in a predictive model must account 
for the sampling methods in which the original 
data were derived (Kvamme 1988b). Besides 
problems with how the spatial locations of sites 
are derived, precision in the ability to accurate-
ly assign a site to a specifi c cultural or tempo-
ral period is often lacking from archaeological 
databases. This problem is particularly acute 
in hunter-gather contexts in which cultural de-
termination is often based on lithic technology. 
Use of stone tools for temporal classifi cation 
requires diagnostic artifacts, which are often 
missing from site materials.

An important consideration of using predic-
tive models is the amount of explanatory power 
given to the environmental correlations. Empir-
ical correlations should be viewed as providing 
some insight into where cultural materials are 
located, not explicitly defi ning why the materi-
als are there. The infl uence of human agency in 
cultural adaptation cannot be easily integrated 
into a numerical analysis of site patterns; how-
ever, archaeological discovery fundamentally 
requires new archaeological data for analysis 
and predictive models are effective tools for 
locating unknown cultural resources (Hudak 
et al. 2000; Warren and Asch 2000). Predictive 
models will not replace human investigation of 
the landscape; however application of a mac-
ro-scale landscape screening tool will improve 
research design, thereby resulting in more ef-
fi cient archaeological surveys and cultural re-
source management (Verhagen 2000).
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3.4 Use of Geographic Information 
Systems

Geographic Information Systems (GIS) are 
imperative to the construction, implementation, 
and testing of archaeological predictive models. 
Although archaeological predictive models have 
been created without the aid of GIS, the amount 
of map measurement required was prohibitive 
and resulting models typically had large land 
parcel sizes and could not easily be projected 
onto unknown areas (Pilgrim 1987). In the case 
of the current model, the study area occupies 
4,134,650 land parcels. For each of these land 
parcels, six different variables were created, re-
sulting in a total of 24,807,900 values for the 
environmental variables alone. This does not 
take into account the number of archaeologi-
cal site locations, non-sites, and the number of 
calculations required to compute the statistical 
model. Obviously this amount of calculations 
could not be completed without the use of mod-
ern computers and GIS software. See Kvamme 
and Kohler (1988) for a thorough review of the 
use of GIS in archaeological predictive models.

3.5 Logistic Regression

The dominant method used in constructing 
quantitative archaeological predictive models 
utilizes a logistic regression technique, either 
binary or multivariate. Binary logistic regres-
sion, a type of probability model, is useful when 
the observed outcome is restricted to two val-
ues, which in this case represent the site-pres-
ent {S} and site-absent {S’} event classes (War-
ren 1990). These events are coded as 1 and 0 
respectively, for use in the database. Output of 
the binary logistic regression represents the 
probability of the event occurring, expressed as 
the Prob(event) or in this case the probability 
of a site occurring Pr(M). In ordinary regres-
sion, the output value of the equation (Z) can 
be any value, positive or negative. Because the 
logistic model output is a probability, the out-
put must be constrained between 0 and 1. Or-
dinary regression output (Z) must be converted 
to a probability value constrained between 0 
and 1 (Clark and Hosking 1986). The standard 
linear regression equation can be generically 
described as:

Z = B0 +B1X1 + B2X2 + ... +BpXp

where Z is the predicted output of the regres-
sion equation (dependent variable), B0 is a 
constant term, Bp is a coeffi cient, and Xp is an 
independent variable for every variable in the 
equation. In order to convert the raw output 
to a probability of the event occurring, the fol-
lowing equation must be applied where e is the 
natural log and (-Z) is the ordinary regression 
output multiplied by -1:

Pr(M) = 1 / 1 +e-Z

And conversely, the probability of an event 
not occurring is expressed as:

Pr (M’) = 1 – Pr (M)

Preference for logistic regression is based 
upon multiple factors. The method is robust 
with respect to the data normality and equal-
ity of variance assumptions required of related 
techniques, e.g., discriminant functions, and it 
can also handle nominal, ordinal, ratio, or in-
terval level data (Gibbon 2000; Kvamme 1990; 
Parker 1985; Warren and Asch 2000). Kenneth 
Kvamme developed the method for use in ar-
chaeology in the early 1980’s (Warren 1990); 
Kvamme’s method of model development and 
assessment is used for the 2-D model described 
herein.

4.0 METHODOLOGY

Methods used for model development are 
divided into database construction (Section 
4.1), model development and results (Section 
5.0), and model integration (Section 6.0). Meth-
odology used to create both models can be ex-
panded to other areas of the Fort Hood Military 
Reservation; all the required GIS data layers 
either already exist or can be converted for GIS 
use within a short period of time.

4.1 Database Construction

The fi rst step towards constructing an ar-
chaeological predictive model is the develop-
ment of a GIS database suitable for predictive 
modeling. In this case, the model database 
contains geographic information about the lo-
cation of archaeological sites, terrain, hydrol-
ogy, and geomorphology. To be included as an 
independent variable in the predictive model, 
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the particular landscape characteristic must 
be relevant to explaining cultural behavior and 
structured for use in the GIS.

The majority of the geographic data used in 
this model are derivatives of geographic data-
sets provided by the Center for Environmental 
Management of Military Lands (CEMML) or 
Fort Hood. GIS data specifi cations are explic-
itly described in Appendix A: GIS Data Layers.

4.2 Archaeological Database

Unique features of the Fort Hood archaeo-
logical database include the large number of 
recorded sites, the classifi cation of those sites 
based on eligibility for the National Register of 
Historic Places (NRHP), and the 100% site sur-
vey of the study area. Each of the features has 
implications for the specifi c methods used to 
construct the 2-D model and will be discussed 
throughout the report.

Structurally, the archaeological site data-
base consists of a polygon shapefi le of known 
archaeological site boundaries and a collection 
of randomly generated point locations that rep-
resent known non-sites. Data layers were con-
verted from vector to raster format for use in 
the model.

4.2.1 Site Data

Construction and testing of a 2-D statisti-
cal model require a sample of archaeological 
sites for training the model and a separate 
sample for testing the model. The sample of 
sites used to construct the model requires par-
ticular attention; consideration must be paid to 
the composition and distribution of the sample. 
Archaeological characteristics of the sample de-
termine the type of site predicted in the model 
output. For example, if the sample is composed 
of surface fi nds from the prehistoric period, 
model output will emphasize surface locations 
with environmental conditions similar to those 
of the prehistoric sites.

For this model, the total number of sites 
was split into two separate shapefi les on the 
basis of eligibility for the NRHP. A total of 118 
sites were divided into a NRHP eligible train-
ing sample (44 sites) and a NRHP non-eligible 
testing sample (74 sites). Once rasterized, the 
training sample contained 56,206 land parcels 
and the testing sample contained 82,275 land 

parcels. Figure 5 displays the distribution of 
the training site samples. The known site test-
ing sample is discussed in the Model Assess-
ment section.

4.2.2 Non-Site Data

Binary logistic regression compares the en-
vironmental patterns of known archaeological 
sites {S} with the patterns of known non-sites 
{S’}; therefore, a set of known non-sites must 
be included in the model training sample. The 
important consideration in constructing the 
non-site sample is to adequately capture the 
range of landscape variability. In order for the 
model to differentiate the landscape effective-
ly, training data must refl ect all the potential 
landscape decisions that could have been cho-
sen for cultural activity. If the non-site sample 
does not contain the range of landscape varia-
tion, the model output will not refl ect the true 
landscape preferences exhibited in the spatial 
pattern of sites.

Non-site data used in the model consisted 
of 435 points randomly distributed throughout 
the study area. Points were buffered to a radius 
of 40 meters and rasterized for use in the model 
(Figure 6). Justifi cation for the random point 
method is based on the claim of the Fort Hood 
Cultural Resources Offi ce of a 100% site survey. 
Consequently, if a site does not exist at a spe-
cifi c location in the database, the assumption 
is that in reality no site exists at that location. 
Non-site points were located within the study 
area boundary and outside any existing site 
boundaries. The appropriate ratio of sites to 
non-sites is not agreed upon in the literature, 
and ratios ranging from approximately 1:2 to 
1:10 are reported (Kvamme 1992; Warren and 
Asch 2000). Warren (1990) provides a cursory 
discussion of the implications of enlarging the 
non-site sample relative to the site-sample. 
The fi nal number of non-site parcels was de-
signed to refl ect a 1:1.5 ratio between sites and 
non-sites. A second set of randomly generated 
non-site points was used for model assessment. 
Details concerning the construction of the non-
site testing sample are described in the Model 
Assessment section.
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4.3 Environmental Database

Determining the appropriate variables to 
use in the predictive model is the fi rst step in 
constructing the environmental database. In 
their native format, landscape metrics con-
tained in standard GIS datasets are of limited 
value to predictive modeling. Most environ-
mental variables used in predictive model-
ing are derivatives of standard GIS datasets. 
Consider a Digital Elevation Model (DEM) as 
an example: the DEM is an extremely useful 
tool for visualizing landscape variation across 
space, however, simple elevation values are not 
a powerful variable for predicting archaeologi-
cal site locations. Although elevation values 
themselves are not powerful variables, the 
DEM can be used in combination with various 

computer algorithms to derive landscape vari-
ables signifi cant for predicting human behav-
ior such as slope, shelter, and relief.

4.3.1 High Resolution Terrain Dataset

Baseline terrain data provided for the proj-
ect is a DEM with a 5m2 pixel resolution (Figure 
3). Data resolution of this scale is only possible 
using a high resolution sampling method; in 
this case the DEM was created by interpolating 
a vector contour map with a 3-meter contour 
interval derived from aerial photogrammetry. 
Specifi cs for this dataset can be found with 
the metadata provided by CEMML. The ac-
curacy and small pixel size of the DEM model 
provides a unique opportunity for the creation 
of other landscape variables to include in the 

Figure 5. NRHP Eligible Known Site Training Sample
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4.3.2 Hydrographic Dataset

Another example of the need to transform 
a typical dataset for use in a predictive mod-
el involves hydrographic datasets. Typically, 
these datasets include line representations of 
rivers and streams, usually coded with a form 
of stream classifi cation. The fundamental ques-
tion posed by the model requires a different 
type of data than that provided by the typical 
hydrographic dataset in its native format. A 
standard hydrographic dataset indicates where 
a stream is located, but the model requires in-
formation about how far each land parcel is 
away from a stream. Therefore, the original 
hydrographic dataset must be used to derive a 
secondary dataset in which every land parcel 

model. Current literature indicates most pre-
dictive modeling projects use the USGS 30m2 
DEM. Any derivative layers created from the 
30m2 DEM subsequently have the same 30m2 
grid cell size. The very high resolution of the 
Fort Hood DEM means that any derivative lay-
ers created from it also have the 5m2 pixel size. 
Therefore, derived slope, shelter index, and 
relief variables are very high resolution. The 
terrain variables included in the 2-D model 
include slope, relief within a 150-meter radius, 
relief within a 300-meter radius, and a ‘shelter 
index’ within a radius of 150 meters. Figures for 
the environmental variables are found in Ap-
pendix A: GIS Data Layers.

Figure 6. Randomly Generated Non-Site Training Sample.
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contains a value describing the distance to the 
nearest water source.

Hydrologic data used in this model, provid-
ed by CEMML, consisted of a line shapefi le rep-
resenting the location of streams on Fort Hood. 
No attribute data were associated with the 
fi les. Stream segments were manually separat-
ed into primary and secondary streams (Figure 
7). Using the Spatial Analyst extension, two 
“Distance from...” grids were created in which 
each 5m2 grid cell contains a value for the dis-
tance to the closest primary and secondary 
stream respectively. The two “Distance from...” 
grids comprise the hydrologic component of the 
model. Figures depicting the “Distance from...” 
grids are located in Appendix A: GIS Data Lay-
ers.

Springs are a fairly ubiquitous feature of 
the Fort Hood landscape and most likely had 
an infl uence on cultural behavior. However, no 
comprehensive database of spring locations is 
available. It is diffi cult to attempt the inclu-
sion of an environmental variable in a predic-
tive model if the dataset is incomplete. Previ-
ous modeling experience with springs data has 
shown that including a non-comprehensive 
spring dataset will skew model results.

4.3.3 Geomorphic Dataset

No formal geomorphic variable was used in 
the construction of the 2-D model, but digital 
geomorphic data were created for use in the 3-D 
model. The primary sources of geomorphic data 
were revised digital versions of alluvial land-

Figure 7. Digital Elevation Model with Hydrology.
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form maps produced by Nordt (1992). Although 
CEMML provided a geomorphic map based 
upon a SSURGO reclassifi cation, coarse reso-
lution of the data rendered it ineffective and 
digital versions of the published analog maps 
were created. Using Nordt’s maps as a guide, 
the T0-T1-T2 terrace landforms of Cowhouse 
Creek and Table Rock Creek were re-mapped, 
in a GIS environment, using a combination of 
data layers including a high-resolution DEM, 
derived slope data, high-resolution aerial im-
agery, and existing 1:24,000 topographic maps 
(Figure 8). The resulting dataset forms the ba-
sis of the 3-D model.

5.0 MODEL DEVELOPMENT AND 
RESULTS

The two models discussed herein represent 
two distinct approaches to predictive modeling, 
use different input data, and produce different 
results. Taken together, these models provide a 
unique approach to predicting the location of 
unknown cultural material. The basis of the 2-
D predictive model is to quantitatively relate 
the presence or absence of archaeological mate-
rial to the environmental characteristics pres-
ent at a location. This model deals only with 
the surface and makes no consideration of the 
potential for deeply buried sites. The 3-D model 
deals with the stratigraphic composition of al-
luvial landforms and the implications for pres-
ervation of cultural material on the landform 

Figure 8. Alluvial Landforms of Cowhouse Creek and Table Rock Creek
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surface and at depth. The 3-D model requires 
stratigraphic landform data and is currently 
limited to the alluvial areas of Cowhouse Creek 
and Table Rock Creek.

5.1 Statistical (2-D) Model

The basic goal of a predictive model is to 
classify a given land parcel into a site-pres-
ent or site-absent class based upon measur-
able landscape characteristics, e.g., distance 
to water, local relief, and slope. The statistical 
method used to determine the relationship be-
tween cultural material and the geographical 
characteristics of the location is the binary lo-
gistic regression analysis. Landscape data for 
known site areas and known non-site areas are 
extracted from the GIS and entered into SPSS 
statistical software for analysis. Once an equa-
tion is developed in SPSS, it is re-entered into 
the GIS and “mapped” across the landscape, 
meaning that all 5m2 grid cells receive a proba-
bility value output from the logistic regression 
equation. The resulting model is a GIS raster 
data layer that represents a continuous prob-
ability surface for encountering cultural mate-
rial. The model is developed using a set of land 
parcels known to contain cultural material and 
a set of land parcels that do not contain cul-
tural material. The developed model is tested 
against a set of known archaeological locations 
that were withheld from the original model 
development. Relative stability of these land-
scape features justifi es the use of modern map 
data within the model. Ability of the model to 
predict the ‘testing’ sample of sites determines 
the power or accuracy of the model.

Variables used in the model include slope, 
relief within a 150-meter radius, relief within a 
300-meter radius, and a ‘shelter index’ within a 
radius of 150 meters. Selection of environmental 
variables was designed to refl ect components of 
the landscape signifi cant for a hunter-gather 
subsistence strategy (Kvamme 1992). These 
variables are derivatives of modern map data 
that were created and stored within a GIS. Al-
though landscapes change over long periods of 
time, this set of environmental variables was 
selected because they represent reasonably 
stable features during the last 15,000 years. 
Areas of the landscape that undergo relatively 
rapid geomorphic change, specifi cally the allu-
vial systems, are dealt with in the 3-D model.

Training the predictive model requires in-
put data for known site land parcels. The known 
site parcels were selected from the set of sites 
eligible for the National Register of Historic 
Places (NRHP). These site locations are eligible 
for the NRHP on the basis of site preservation 
and diagnostic artifact collections. Locations of 
the NRHP-eligible sites may refl ect a geologic 
tendency for preservation. By using these sites 
the model incorporates landscape positions fa-
vorable for cultural activity and site preserva-
tion. Model output could therefore be viewed 
as predicting areas of the landscape that have 
a high probability of containing preserved cul-
tural material.

Binary logistic regression also requires data 
about the null condition, which in this case is 
known non-site locations. Selection of the non-
site sample must refl ect the true variability of 
the landscape. The model must contain infor-
mation about all possible landscape locations. 
A true representation of the landscape in the 
non-site data allows the model to better dis-
criminate locations of cultural activity from the 
overall set of landscape choices.

Statistical information required to con-
struct the predictive model was extracted from 
the GIS and imported into an SPSS database 
which formed the basis of the statistical anal-
ysis. In total, 56,206 known site parcels and 
86,237 known non-site parcels were extracted 
from the GIS for the training sample. An ad-
ditional set of 82,275 site parcels and 8,407 
non-site parcels were extracted for the testing 
sample.

Due to the large size of the training sam-
ples, the statistical calculations used in model 
construction were based upon a 10% sample of 
the training data exported from the GIS. The 
small land parcel size resulted in redundant 
statistical data collection and the number of 
samples was too large to compute the logistic 
regression model. Although only 10% of the 
cells extracted from the dataset were used 
for model construction, visual analysis of the 
spatial pattern of the 10% indicate they were 
randomly extracted from the overall set and 
therefore represent a valid statistical sample. 
The number of samples in the 10% extraction 
is still signifi cantly large (8,593 non-site and 
5,532 site cells).

A backward conditional stepwise logistic 
regression technique was used to create the 
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predictive model. Using this method, all the 
variables are initially entered into the regres-
sion, and insignifi cant variables are removed 
at each iteration of the model. In this case, 
all variables were found to be signifi cant, and 
none were removed from the model. In order 
to test if the backward conditional regression 
was valid, a model was also constructed using 
a forward conditional stepwise logistic regres-
sion. This method differs from the backward 
conditional in that no variables are included at 
the fi rst step of the model; additional variables 
are added at each iteration based upon the ex-
planatory power of the variable. In the forward 
conditional model all variables were found 
signifi cant and the variable coeffi cients were 
identical to the backward conditional method. 
No coeffi cient was included in the regression 
equation.

5.1.1 Model Output

The regression equation developed by SPSS 
is expressed as the following:

Z = (-.0256979 * SLOPE) + (.0000084 * 
SHELTER150) + (.0367382 * RELIEF150) 
+ (.0206011 * RELIEF300) + (-.0010430 * 
D_MAIN) + (-.0033151 * D_SECONDARY)

In order to convert the Z equation into a 
probability score, the following equation is also 
required:

FinalModel = 1 / (1 + EXP (-Z))

Using the model coeffi cients derived in 
SPSS, both equations were re-entered into 
the GIS. Using the Raster Calculator function 
within Spatial Analyst, the equation repre-
senting the model output was entered. The GIS 
then applies the equation to every land parcel 
in the study area. The landscape characteris-
tics of each land parcel are used in the equation 
and a probability score for each land parcel is 
generated. The resulting product is a decision 
surface (FinalModel) describing the probability 
for the land parcel to contain cultural material 
(Kvamme 1992).

Model output for each land parcel is a 
value ranging between 0 - 1. Values near 1 are 
associated with land parcels with environmen-
tal conditions similar to the site-present event 

class. Low values, near 0, have environmen-
tal conditions similar to the site-absent event 
class. Values in the middle are ‘indeterminate’ 
(Kvamme 1992:30; Warren 1990). See Figure 9 
for a visual depiction of model output. For dis-
play purposes, the raw probability values were 
converted to whole numbers with values rang-
ing between 0-10 and classifi ed into 10 equal 
classes.

5.1.2 Model Assessment

Model accuracy is assessed using the meth-
ods describe in Kvamme (1992). Methods and 
logic for the accuracy assessment are reported 
below. The optimal modeling goal is to maxi-
mize the percentage of correctly classifi ed site-
present class (S) in a minimum of land area 
(M). The techniques for calibrating the model 
for this goal are a critical component of model 
assessment.

Accuracy of the predictive model is mea-
sured primarily in terms of its ability to cor-
rectly classify both known site locations and 
known non-sites. A complete representation 
of model accuracy includes both the percent-
age of correctly identifi ed sites and percentage 
of correctly identifi ed non-sites. The percent-
age correct of sites represents the percentage 
of sites (S) that are correctly classifi ed within 
the site-present class of the model (M), and the 
percentage correct of non-sites (S’) represents 
the percentage of the site-absent class correctly 
classifi ed in the site-absent class of the model 
(M’). These two measures can be described as 
100Pr(M|S) and 100Pr(M’|S’). Additional as-
sessment metrics include the probability of a 
site occurring when the model predicts a site, 
Pr(S|M), and the probability of a site occur-
ring when the model does not predict a site, 
Pr(S|M’).

Kvamme (1988a) indicates a predictive 
model must perform better than a random 
chance model. Using the metrics described 
above, and the base-rate probabilities, the 
model can be evaluated in a quantitative and 
defendable manner. Comparing the measures 
of model accuracy with the base-rate probabili-
ties provides a method of quantifying model ac-
curacy as a percentage increase over random. 
Computation of the random chance or base-
rate models are discussed below.
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Output of the model classifi es the land-
scape into two event classes (M and M’), yet the 
output of the regression is a probability score 
ranging from 0 - 1. A ‘cut-point’ in the range of 
probabilities must be established. For example, 
the standard cut-point is 0.5, meaning that any 
land parcel with a probability score of 0.5 or 
greater would be assigned to the site-present 
(M) class and any score less than 0.5 would be 
in the site-absent (M’) class. This relationship 
is described mathematically as:

M = L ≥ 0.5
and

M’ = L ≤ 0.5

where L is the decision point or cut-point at 
which the range of values is divided. Although 

0.5 is the standard cut-point, the value can 
be shifted higher or lower based on modeling 
needs. Consider if the cut-point were moved or 
‘slid down’ to 0.4, the percentage of archaeo-
logical locations correctly identifi ed would in-
crease, but an associated decrease occurs in 
the percentage of non-site locations correctly 
identifi ed. The change in percentage correctly 
identifi ed is due to a larger land area being in-
cluded in the site-present class (M) as the cut-
point is lowered. Using this logic, it is possible 
to correctly identify 100% of the archaeological 
sites by moving the cut-point to an extremely 
low number (0.01); however, the model would 
accurately predict 0% of the non-site locations 
and the site-present class (M) would occupy 
100% of the landscape. This would offer no util-
ity to land use managers.

Figure 9. Probability Distribution Output of Predictive Model.
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Two methods for determining the appropri-
ate cut-point are found in the literature. The 
fi rst places the cut-point at the graphical in-
tersection of the site-present and site-absent 
classes. The intersection cut-point represents 
the model optimum, the cut-point in which the 
greatest percentage of site-present and site-ab-
sent parcels are correctly classifi ed simultane-
ously (Warren 1990). Kvamme (1992) indicates 
that a predictive model should correctly iden-
tify at least 85% of the site-present sample. 
Therefore, the cut-point is established by de-
termining the value at which 85% of the sites 
are correctly classifi ed. The Mn/Model goes a 
step further in requiring that their Phase 3 
models correctly identify 85% of the sites and 
that the landscape area classifi ed as site-pres-
ent (M) does not occupy more that 33% of the 
total landscape (Hudak et al. 2000). For the 
purposes of this model, the cut-point is set at 
the level in which approximately 85% of the 
sites are accurately classifi ed.

5.1.2.1 Base-Rate Probabilities

A fundamental requirement of quantita-
tive model assessment is computation of the 
base-rate, or random chance, probabilities. A 
total of 118 sites are located within the study 
area, 44 NRHP eligible and 74 NRHP non-eli-
gible sites. These sites occupy a total of 138,481 
5m x 5m land parcels. The entire study area oc-
cupies 4,134,650 land parcels. The base-rate or 
a priori probability of the site-present {S} event 
class can be calculated as:

Pr(S) = 138,481 / 4,134,650 = 0.0335

and the site-absent class {S’} as:

Pr(S’) = 3,996,169 / 4,134,650 = 0.9665

The event classes are mutually exclusive 
and represent all possible outcomes, i.e., Pr(S) 
+ Pr(S’) = 1. The base-rate probabilities provide 
“pure-chance” probabilities for each archaeo-
logical event class. Using an example from 
Kvamme (1992), the “pure-chance” probabilities 
are analogous to the probability of identifying 
a site by throwing darts at a map. By chance, 
3% of the darts would land on a site parcel and 
97% would not. Establishing the a priori prob-
abilities for the two event classes sets the stan-

dard by which the predictive model is evalu-
ated. In order to be considered effective, the 
model must “predict an event occurrence with 
probability greater than the event’s base-rate 
chance of occurrence” (Kvamme 1992:28). Writ-
ten mathematically, the previous statement is 
expressed as:

Pr(S|M) > Pr(S)

where Pr(S|M) is the probability of a site given 
that the model specifi es a site. The mathemati-
cal expression is the quantitative version of the 
statement that a model must perform better 
than random chance.

Calculation of Pr(S|M) was designed to be 
conservative due to the inclusion of all known 
site-present parcels in calculation of the base-
rate probability, Pr(S). If the base-rate prob-
ability was computed using only the training 
sample, Pr(S) would equal 0.0135, signifi cantly 
lower than the value of Pr(S) equal 0.0335 used 
in assessment calculations. Lowering the value 
of Pr(S), and the subsequent increase of Pr(S’) 
would not make the model more powerful in 
reality, but the statistics used to calculate the 
model’s predictive power increase over random 
chance would increase.

5.1.2.2 Training Data

The model was trained with a 10% sample of 
the NRHP-eligible site locations and randomly 
generated non-site locations. The sub-sampling 
was required due to the large number of overall 
samples; SPSS would not compute the regres-
sion equation using all the land parcels. How-
ever, preliminary model assessment utilized all 
the available site and non-site training parcels. 
Histograms displaying the distribution of both 
site and non-site training parcels along the 
probability gradient are shown in Figures 10 
and 11, respectively. Optimally, the site sample 
will cluster near the high end of the probability 
range and the non-site sample will cluster near 
the low end of the range. Clustering of the two 
event classes at different ends of the probabil-
ity spectrum indicates the model is effectively 
separating the landscape.

Histograms indicate that both samples 
are effectively separated along the probability 
spectrum. One potential problem relates to the 
large number of known site sample cells in the 
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Figure 10. Predictive Probability of NRHP-Eligible Site Training Sample.
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Figure 11. Predictive Probability of Known Non-Sites Training Sample.
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21-30% probability class. In order to correctly 
classify 85% of the known sites, the cut-point 
must be shifted signifi cantly to lower than the 
standard 0.5 value. In this case, the cut-point is 
set a 0.25. Figure 12 displays the results of the 
graphical cut-point. The 0.25 cut-point is well 
below the ‘optimal’ cut-point, located at the 
graphical intersection of the training and test-
ing samples. In the case of the training data, 
the optimal cut-point is approximately 0.42. 
However, using this value will only correctly 
classify 75% of the known sites.

Table 1 displays the accuracy assessment 
using a cut-point = 0.25. 

Assessment of the training data at the 
0.25 cut-point indicates the model correctly 
classifi es over 86% of the sites and 54% of the 
non-sites. Alternatively, 13% of sites and 46% 
of non-sites were incorrectly classifi ed. The re-
ported accuracy of the site-present class (M) 
most likely contains some upward bias due 
to the use of training data, therefore an addi-
tional set of data were used to more rigorously 
analyze model output (Kvamme 1992).
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Figure 12. Optimal Cut-Point of Predictive Model (training data).

Table 1. Accuracy assessment using a 0.25 cut point

Model Predictions Training Data

M (Site-Present) M' (Site-Absent)

True Condition (L | .25) (L | .25) N

S (Site-Present) 48779 (86.79%) 7427 (13.21%) 56206

S' (Site-Absent) 39677 (46.01%) 46560 (53.99%) 86237
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Figure 13. NRHP Non-Eligible Known Site Testing Sample.

5.1.2.3 Testing Data

In order to better assess model accuracy, 
an additional set of known sites were withheld 
from model development and tested against the 
completed model. The set of land parcels from 
the NRHP non-eligible sites were used for sec-
ondary model testing. A total of 82,275 known 
site parcels were extracted from the NRHP 
non-eligible sites for use as a testing sample 
(Figure 13). A separate random sample of non-
sites was also created. Identical procedures for 
creating the random sample were used, with 
the exception that the points were buffered to 
a distance of 15 meters. A smaller buffer size 
results in 8,407 non-site land parcels when the 
points were converted from a vector to raster 
data format (Figure 14). The smaller number 

of parcels was found to be acceptable due to the 
high degree of similarity with the larger train-
ing non-site sample. Similarity between the 
two samples indicates the utility of the random 
point method of generating a sample of non-
sites for use in the model.

Histogram distributions of the site and 
non-site testing sample are shown in Figures 
15 and 16 respectively. Probability distribu-
tions are similar to the training samples, in-
cluding the disproportionately large number 
of site parcels in the 21-30% probability class. 
As in the training sample, the large number 
of known site land parcels in a low probability 
range requires that the cut-point of the model 
be moved lower on the probability scale. The 
cut-point must again be set at 0.25 to correctly 
classify 85% of the site testing sample. The 0.25 
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Figure 14. Randomly Generated Non-Site Testing Sample.

site samples have higher values than the over-
all landscape, the model is performing better 
than random chance. By manipulating the data 
used in the construction of Figure 18, it is pos-
sible to exactly quantify the model’s percentage 
increase over random for any given probability 
class.

Graphical analysis indicates that by clas-
sifying 85% of the known sites into 56% of the 
land area, the 0.25 cut-point value represents 
approximately a 30% gain over a random clas-
sifi cation (Figure 19). Dividing the study area 
into the site-present class (M) and the site-ab-
sent class (M’) at the 0.25 cut-point results in 
56% of the study area assigned to the site-pres-
ent class (M) and 44% assigned to the site-ab-
sent class (M’) (Figure 20).

cut-point value is again well below the ‘optimal’ 
cut-point derived from the graphical intersec-
tion method (Figure 17).

Table 2 displays the results of the testing 
sample at the 0.25 cut-point level.

Predictive power of the model at the 0.25 
cut-point diminishes slightly with the use of 
testing data. This drop could be due to the na-
ture of the NRHP non-eligible site locations or 
to the accuracy infl ation associated with the use 
of training data to assess model accuracy. In ei-
ther case, 83% of the testing sample site data 
and 51% of the non-site testing data are cor-
rectly classifi ed. Additional assessment metrics 
can be derived by comparing the total amount 
of land parcels with the amount of known site 
parcels classifi ed within a particular probabil-
ity class (Figure 18). If the curves of the known 
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Figure 16. Predicted Probability of Known Non-Site Testing Sample.
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Figure 17. Optimal Cut-Point of Predictive Model (testing data).

Table 2. Results of the testing sample at the 0.25 cut-point level

Model Predictions Testing Data

M (Site-Present) M' (Site-Absent)

True Condition (L | .25) (L | .25) N

S (Site-Present) 68543 (83.31%) 13732 (16.69%) 82275

S' (Site-Absent) 4124 (49.05%) 4283 (50.95%) 8407

Probability levels can be written using the 
Kvamme’s notation as:

Pr(M|S) = 0.8331

Pr(M|S’) = 0.4905

where, Pr(M|S) is the probability that the 
model correctly identifi es a site given that a 
site is actually present, and Pr(M|S’) is the 
probability that the model correctly identifi es 
a non-site given that a site is actually not pres-
ent (Kvamme 1992:33).

As stated earlier, for a predictive model to 
be considered successful, the probability of a 
site occurring given the model specifi es a site, 
Pr(S|M), must be greater than the base-rate 
probability Pr(S) calculated at 0.0335. Pr(S|M) 
is the reverse conditional of Pr(M|S) and can 
be estimated using Baye’s Theorem:

 Pr(M|S) Pr(S)
Pr(S|M) = ----------------------------------------------

 Pr(M|S) Pr(S) + Pr(M|S’) Pr(S’)
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Figure 19. Percent Gain Over Random Classifi cation.
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random chance. Although Pr(S|M) is very low, 
it is due to the low base-rate probability and 
the fact that archaeological sites are rare on 
the landscape. Approximately 5.6% of the land 
parcels in the site-present area (M) will contain 
a site. Stated another way, if the model predicts 
a site, the probability of a site occurring is 
Pr(S|M) / Pr(S) or (.0556)/(.0335) = 1.65 times 
more likely than random chance alone. Consid-
ering that over 4 million land parcels are in the 
study area, this represents a signifi cant gain 
over a random chance model (Kvamme 1992).

Using this same methodology, it is possible 
to estimate the probability of a site occurring 
given that the model predicts a non-site or 
Pr(S|M’). Small changes to the above equation 
result in:

Using the values already determined, this 
equation yields:

 (.8331)(.0335)
Pr(S|M) = ----------------------------------------------

 (.8331)(.0335) + (.4905)(.9665)

Pr(S|M) = 0.0556

Pr(S|M) > Pr(S)

0.0556 > 0.0335

Analysis indicates the probability of a site 
occurring given that the model predicts a site 
is = 0.0556. Because Pr(S|M) is greater than 
Pr(S), the current model is more effective than 

Figure 20. High Probability Areas at the 0.25 Cut-point.
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random chance alone. Therefore, the model can 
be viewed as predicting site locations better 
than random (0.0556 > 0.0335), a pre-requisite 
for any effective model. Archaeological sites 
should occupy 5.5% of the land parcels within 
the site-present class (M) and 0.88% of the land 
parcels in the site-absent class (M’). The base-
rate probability indicates a site occurs in 3.35% 
of the land parcels in the study area.

Model training utilized a set of archaeo-
logical sites eligible for listing on the National 
Register of Historic Places (NRHP) and may 
represent sites that contain better preserved 
cultural material than the NRHP non-eligible 
sites used to test the model. Subsequently, areas 
with high probability scores may be predicting 
the location of not only archaeological sites but 
locations with a high probability of containing 
well-preserved and extensive cultural materi-
als. However, if the presence of NRHP eligible 
sites is due to the lack of destruction originating 
from tracked vehicles, high probability zones 
may simply refl ect areas that are not heavily 
utilized for training maneuvers. In either case, 
the implications of using NRHP eligible sites 
for model training is currently not well under-
stood and requires further investigation.

Disproportionately large values of the 
known site samples in the 21-30% probability 
class represent a defi ciency in the model. Vi-
sual analysis of site locations compared with 
the model output indicates a preference for 
site locations at the headwaters of secondary 
streams, which are consistently modeled as 
low probability. Refi nements in future models 
should address this qualitative pattern by cre-
ating quantitative environmental variables to 
capture this landscape preference. Assigning 
the cut-point at the relatively low value of 0.25 
can be directly attributed to this pattern.

The current 2-D model differs from the pre-
viously created predictive model for Fort Hood 
(Carlson et al. 1994) in very signifi cant ways, in-
cluding the land parcel size (5m2 versus 50m2), 
the resolution of the environmental data, the 
selection of relevant environmental variables, 
the number of archaeological sites available, 
and the assessment of model performance. The 
previous model also included the entire base as 
the study area. As a result of all these factors, 
the output of the model (Carlson 1994) differs 
signifi cantly from the current model. Consid-
ering the data quality and extent of archaeo-

 Pr(M’|S) Pr(S)
Pr(S|M’) = ----------------------------------------------

 Pr(M’|S) Pr(S) + Pr(M’|S’) Pr(S’)

Using the values already determined, this 
equation yields:

 (.132)(.0335)
Pr(S|M’) = ----------------------------------------------

 (.132)(.0335) + (.5905)(.9665)

Pr(S|M’) = 0.0088

Calculation of Pr(S|M’) indicates 0.88% of 
the land parcels in the site-absent area (M’) will 
contain a site. The probability of fi nding a site 
is approximately 6 times less than in the site-
present area (M). Compared to the base-rate 
probability, the probability of fi nding a site is 
0.26 as likely as pure-chance. These values rep-
resent a signifi cant decrease from the base-rate 
probability and indicate the model is effectively 
classifying the landscape into site-present and 
site-absent classes.

Kvamme (1992) reports similar accuracy 
values for a model in Pinon Canyon, Colorado. 
The D-E study area model predicted 85% of 
sites within 61% of the land area. While more 
powerful models were created for other zones 
of the Pinon Canyon study area, Kvamme re-
ports the D-E area values to be a signifi cant 
improvement over random chance. The most 
powerful model from Pinon Canyon is reported 
in Kvamme (1988a). The Pinon Canyon model 
for the A-B-C study area was able to predict 
85% of sites in 39% of the land area, versus the 
85% predicted in 56% of the land area for the 
current model.

5.1.3 2-D Model Conclusions

Summarizing the results of the 2-D model 
assessment at the 0.25 cut-point level, 85% of 
site-present land parcels (S) are correctly clas-
sifi ed as site-present (M), and 51% of the site-
absent land parcels are correctly classifi ed as 
site-absent (M’). Total area of the study area 
included in the site-present event class (M) at 
the 0.25 cut-point level is 56%. In comparison 
to the base-rate or random chance probabilities, 
the current model is 1.65 times more likely to 
predict a site in the site-present class (M) than 
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ervation of material within the units. Imple-
mentation of this data in a GIS environment is 
discussed in Section 6.0 Model Integration.

Details concerning the sedimentary na-
ture and cultural signifi cance of the alluvial 
stratigraphic units are beyond the scope of the 
current report. Detailed descriptions of meth-
odologies, data, and conclusions of the ‘Archae-
ological Geology’ model can be found in Nordt 
(1992).

6.0 MODEL INTEGRATION

Integration of the 2-D and 3-D models re-
quired the development of a custom software 
tool for use within the GIS environment. De-
velopment of the ‘Predictive Model Viewer’ uti-
lized the Visual Basic for Applications (VBA) 
development environment inside ArcGIS. Mi-
crosoft’s Visual Basic programming language 
is used in conjunction with ESRI’s ArcObjects 
software in the VBA environment. ArcObjects 
is the product name for the software code on 
which the ArcGIS programs are constructed. 
Use of ArcObjects in the VBA environment al-
lows customization of the GIS functions avail-
able in ArcGIS.

The ‘Predictive Model Viewer’ allows a user 
to select any location within the study area and 
receive information about the location includ-
ing the UTM coordinate, alluvial landform, 
stream system, and output of the 2-D and 3-D 
model. Results of the 2-D model are read di-
rectly from the GIS data layer and converted 
into percentages to simplify interpretation. 3-D 
model results are based upon Table 2 of Nordt 
(1992). Predictions about the age and potential 
preservation of cultural material were extract-
ed and hard coded into the Predictive Model 
Viewer software code. Information is delivered 
to the user via a custom Windows-style dialog 
box. Figures 21 and 22 display the Predictive 
Model Viewer dialog form and how the form ap-
pears within the GIS environment.

An additional function of the tool is the 
‘Cross Section Viewer’. Users have the ability 
to open an image of the generalized geologic 
cross section for either stream system. Nordt 
(1992) constructed generalized geologic cross 
section diagrams for both the Cowhouse and 
Table Rock Creek alluvial systems. Although 
generalized, these diagrams provide valuable 
information about the potential stratigraphic 

logical survey available to the Carlson model, 
the current model is methodologically superior. 
However, the only way to ensure the reliabil-
ity of any predictive model is the acquisition 
of new archaeological survey data designed for 
model assessment.

5.2 Geoarchaeological (3-D) Model

One component of the landscape that ex-
periences relatively rapid rates of landform 
changes includes alluvial systems. The nature 
of alluvial processes is such that the sub-surface 
composition of landforms cannot be accurately 
predicted on the basis of surface morphology. 
In the absence of high-resolution, sub-surface 
data (cores, trenches, or exposures), no method 
can accurately predict the nature and extent 
of sub-surface alluvial deposits. It is, there-
fore, beyond the scope of this report to attempt 
prediction of actual sub-surface stratigraphic 
units. Previous research into the nature and 
distribution of Fort Hood alluvial fi lls and their 
implications for cultural material preservation 
represents a reliable source of information for 
the geoarchaeological component of the pre-
dictive model (Nordt 1992). Alluvial landform 
maps of Cowhouse Creek and Table Rock Creek 
published in Nordt (1992) form the core of the 
3-D model. Alluvial landforms were grouped 
into T0, T1, and T2 terraces for both stream 
systems. The landform maps were modifi ed 
slightly from the original versions for use in 
this project. The lack of digital versions of the 
maps required an analog to digital conversion 
for use in the GIS. Creation of the new land-
form maps is outlined in Section 4.3 Environ-
mental Database.

Other than the landform maps, Nordt 
(1992: Table 2) provides specifi c details con-
cerning the age and cultural potential of alluvi-
al sediments in both stream systems. Informa-
tion from this table has been reproduced and 
is shown in Table 3 of this volume. Specifi cally, 
Table 3 contains data about the age of landform 
surfaces, the age range of cultural materials 
found on landform surfaces, and the potential 
stratigraphic units that occur within specifi c 
landforms. Ages of the stratigraphic units were 
established using radiocarbon dating. From the 
chronological data, appropriate cultural peri-
ods were assigned to the various stratigraphic 
units as well as a rating of the potential pres-
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Table 3. Preservation potentials for surface and subsurface cultural sites (- none; + low; ++ 
medium; +++ high; + or ++ facies dependent)

Surface Site 
Preservation Subsurface Site Preservation

Streams

Landform
Cultural 
Divisions Allostratigraphy d

Cultural 
Divisions Leon Cowhouse

Table 
Rock Other

T3 a,T2 All
Reserve a or Jackson 

(A, Aa, Ab)
———

-
———

-
———

-
———

-
———

-

T1a

Paleoindian 
(?) and 

younger Georgetown (B) Paleoindian + + + + or -

T1a b, T1 c

Early 
Archaic and 

younger Fort Hood (C)
Early 

Archaic ++ ++
+ or 
++ +

T1b b, T1 c

Middle 
Archaic and 

younger West Range (D)

Middle 
and Late 
Archaic, 

Neoarchaic +++ +++ ++ +

T0
Neoarchaic 
and Historic Ford (E)

Neoarchaic 
and Historic + + + +

a applies to Leon River only
b  applies to all streams except Cowhouse Creek and the Leon River
c  applies to Cowhouse Creek only
d  applies to all streams unless otherwise stated

Adapted from Nordt (1992)

the Table Rock Creek sediments found in Table 
2 of Nordt (1992), the appropriate symbology 
for cultural signifi cance was developed for the 
new Table Rock Creek graphic. Figure 23a and 
Figure 23b display the revised geologic cross-
section graphics for Cowhouse Creek and Table 
Rock Creek, respectively.

It is important to note the code for the Pre-
dictive Model Viewer will not function if certain 
map data layers are not within the ArcMap 
document (see Appendix B for detailed infor-
mation on the ‘Predictive Model Viewer’).

composition of alluvial landforms. Original fi g-
ures were scanned and digitized in a graphics 
program and the layout changed for use in the 
Cross Section Viewer. The graphic for Table 
Rock Creek has been adapted from its origi-
nal content. Originally, the Table Rock Creek 
graphic, Figure 9 in Nordt (1992), displays the 
generalized geologic cross section, but does 
not contain symbology refl ective of its cultural 
signifi cance. Copying the symbology present 
on the original Cowhouse Creek fi gure (Fig-
ure 28 in Nordt) and incorporating additional 
information about the cultural signifi cance of 
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Figure 22. Screen shot of Predictive Model Viewer in operation.

Figure 21. Screen shot of Predictive Model Viewer 
Graphical User Interface (GUI).
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Figure 23a. Cross-section of Cowhouse Creek drainage.

Figure 23b. Cross-section of Table Rock Creek drainage.
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installation as a whole would increase the pre-
dictive power of the 2-D model and provide an 
empirical equation that could be applied to oth-
er areas of the Edwards Plateau. Prerequisites 
for model construction, including high-resolu-
tion digital environmental data, extensive ar-
chaeological survey data, and alluvial landform 
data, are available for the entire base. Geoar-
chaeological conclusions of other major stream 
systems reported in Nordt (1992) could be con-
verted to a GIS format using the methodology 
described herein. The use of a geomorphology 
layer for the areas outside of the river valleys 
would likely increase the predictive power of 
the statistical model and, when combined with 
sub-surface data for the newly mapped areas, 
the 3-D model would be truly integrated.

7.0 CONCLUSIONS

The methodology used to create this mod-
el represents a unique and novel approach to 
the production and integration of 2-D statis-
tical surface models and sub-surface data in 
the form of geoarchaeological or 3-D models. 
Development of the ‘Predictive Model Viewer’ 
provides a rapid, easy-to-use method of synthe-
sizing the output of the two models.

7.1 Expanding the Methodology

The methodology used to generate the mod-
els discussed herein is applicable to the remain-
der of the Fort Hood Military Reservation. It is 
the opinion of the authors that modeling the 
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APPENDIX A: GIS DATA LAYERS

The following section lists the GIS layers created for the predictive model. Several of the pri-
mary data layers were provided by CEMML. ‘Primary’ data layers were used to derive several 
‘secondary’ data layers. Secondary data layers were used in the predictive model. Data layers are 
categorized into Archaeological, Elevation, Hydrological, Geomorphic, and Predictive Model Out-
put groups. For each data layer, the name is provided as well as the method used to derive it. All 
raster data layers use a 5 meter2 grid cell size.
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Figure 24. Distribution of Prehistoric Archaeological Sites.

Archaeological Data Layers

• sites_p_elig 
 – Historic Register eligible sites 

extracted from ‘hood_s_p’ coverage 
provided by CEMML

 – Contains 44 sites
 – Raster version: sites_p_elig

• sites_p_ne
 – Historic Register non-eligible sites 

extracted from ‘hood_s_p’ coverage 
provided by CEMML

 – Contains 74 sites
 – Raster version: sites_p_ne

• See Figure 24 for the distribution 
map of all archaeological sites.
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Environmental Data Layers

Elevation: 5m grid cell (very high 
resolution)

• dem_int
 – INT (lfhypdem)
 – Source data provided by CEMML: 

DEM is an interpolation of 3-
meter contour map provided by 
Ft. Hood, exact contour interval 
unknown (See ‘lfhypdem’ metadata 
for details)

 – See Figure 3 (on page 4)

• slope
 – Spatial Analyst (dem_int)
 – See Figure 25

Figure 25. Derived Slope.
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Figure 26. Relief within 150 meters.

• relief150
 – Focalrange (dem_int, circle, 30)
 – See Figure 26
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Figure 27. Relief within 300 meters

• relief300
 – Focalrange (dem_int, circle, 60)
 – See Figure 27
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Figure 28. Shelter Index.

• shelter150 (Shelter Index)
 – temp1 = focalsum ([study_area], 

circle, 30, data)
 – temp2 = ([dem_int]+20) * [temp1]
 – temp3 = focalsum ([dem_int], 

circle, 30, data)
 – shelter150m = [temp2] - [temp3]
 – See Figure 28
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Figure 29. Distance to Primary Streams.

Hydrologic: 5m grid cell (very high 
resolution)

• streams_main
 – ‘main’ streams extracted from 

‘hysurwcc’ coverage, provided 
by CEMML, using large fi eld 
map created for Jim Zeidler 
(10/08/2002)

• streams_secondary
 – ‘secondary’ streams extracted 

from ‘hysurwcc’ coverage, provided 
by CEMML, using large fi eld 
map created for Jim Zeidler 
(10/08/2002)

• d_main
 – Spatial Analyst: Distance from.....

Straight line (streams_main)
 – See Figure 29
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Figure 30. Distance to Secondary Streams.

• d_secondary
 – Spatial Analyst: Distance from.....

Straight line (streams_secondary)
 – See Figure 30
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Geomorphological / Landscape

• Digital Nordt Landforms
 – Polygon shapefi le created by re-

mapping the alluvial landforms of 
Cowhouse and Table Rock Creek

 – The published landform maps in 
Nordt (1992) were used as a guide

 – Remapping took place within 
the ArcMap GIS environment 
with a digital elevation model, 
derived slope data, aerial imagery, 
and 1:24k topographic maps as 
additional information

 – See Figure 8 (on page 14)

Predictive Model Data Layers

• stathoodmodel – referred to as ‘2D 
Predictive Model’ in the ArcMap doc-
ument

 – created using the logistic 
regression equation described in 
the body of the report

 – utilized in the Predictive Model 
Viewer

 – each grid cell contains a 
probability percentage (0-100%) 
which was created by multiplying 
the original probability model by 
100

 – See Figure 9 (on page 17)

• ctpt25
 – probability map reclassifi cation 

using the 0.25 cut-point value into 
site-absent (M’) and site-present 
(M) event classes

 – serves as the basis of model 
accuracy assessment

 – See Figure 20 (on page 26)
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APPENDIX B: 
PREDICTIVE MODEL VIEWER 

(NOT AVAILABLE TO THE GENERAL PUBLIC)
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As described in the main body of the re-
port, the Predictive Model Viewer is a custom 
GIS tool designed using Visual Basic and Ar-
cObjects. Specifi cally, the tool allows users to 
select a location within the study area and 
receive 2-D and 3-D model predictions about 
the potential of the location to contain cultural 
material. Software code used to construct the 
tool was developed within the Visual Basic for 
Applications (VBA) environment embedded 
within ArcGIS. Access to the Visual Basic code 
is ‘locked’ within the FtHoodPredictiveModel.
mxd ArcMap document. Using the password 
‘fthood’, users can access the code. Locking of 
the VBA environment was done simply to stop 
inadvertent code changes.

The ‘Predictive Model Viewer’ and associ-
ated ‘Cross-Section Viewer’ require certain GIS 
data fi les and other graphic (.jpg) fi les to be lo-
cated in specifi c locations relative to each other 
on a computer hard drive. The folder that con-
tains the ArcMap document and other required 
fi les can be placed at any hard drive location. 
However, in order for the ‘Predictive Model 
Viewer’ to operate correctly, the directory struc-
ture of the fi les should not be changed, and the 
fi les should be kept together at the same loca-
tion.

Figure 22 displays a screen shot of the op-
erating Predictive Model Viewer. Note the pres-
ence of the required GIS data fi les within the 
ArcMap Table of Contents. Specifi cally, ‘Point-
Temp’, ‘Digital Nordt Landforms’, and ‘2D Pre-
dictive Model’ must be co-located within the 
ArcMap document for the Predictive Model 
Viewer to work correctly. The ‘Cross-Section 
Viewer’ requires that the three graphics fi les 
named ‘CowhouseSection’, ‘TableRockSection’, 
and ‘UplandSection’ be located within a folder 
entitled ‘graphics’ at the same location as the 
ArcMap document (FtHoodPredictiveModel.
mxd). These fi les are distributed with the cor-
rect directory structure on a CD format. Files 

must simply be moved, or the .zip fi le opened, 
to a single hard drive location. If the ArcMap 
document becomes corrupt or the ‘Predictive 
Model Viewer’ does not operate correctly, the 
original .mxd fi le can be installed again from 
the original CD.

The ‘FtHoodPredictiveModel.mxd’ fi le has 
been write-protected, which means users should 
not be able to save any changes to the ArcMap 
document using the original name. It is hoped 
this will limit inadvertent changes that would 
adversely affect the ‘Predictive Model Viewer’ 
from operating correctly. Other GIS data lay-
ers may be added to the ArcMap document and 
saved. However, the new ArcMap (.mxd) fi le 
must be saved using a different name. As long 
as the three required GIS data layers are with-
in the document, the ‘Predictive Model Viewer’ 
tool will operate correctly regardless of the 
name of the ArcMap document. The ‘Cross-Sec-
tion Viewer’ tool will only work if the ‘graphics’ 
folder, which contains the cross-section images, 
is located at the same directory location as the 
new ArcMap document.

For example, installing the ArcMap docu-
ment at this location:

C:\FtHood_GIS\Model\
FtHoodPredictiveModel.mxd

requires that the graphics folder be installed at 
this location:

C:\FtHood_GIS\Model\graphics

Contact Joshua S. Campbell (jsc1@ku.edu) 
for any additional questions concerning the con-
struction or operation of the ‘Predictive Model 
Viewer’ and ‘Cross-Section Viewer.’ NOTE: This 
product is not available to the general public 
and is not available on the enclosed CD-ROM 
disk.


